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Abstract

This paper reconciles the concepts of ex ante and ex post supply func-
tion equilibria of, respectively, Klemperer and Meyer (1989) and Menezes
and Quiggin (2020) with the conjectural variations equilibrium of Bowley
(1924) and Bresnahan (1981). We show that under appropriate condi-
tions, the ex ante and ex post equilibrium supply curves coincide with
each other and with the consistent conjectural equilibrium solution. Fur-
ther, this is a dominant strategy equilibrium for both ex ante and ex post
games, and represents the case in which players are indifferent regarding
move order. We explore the implications of our results for empirical work.
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1 Introduction

Since the resurgence of game theory in the 1970s, industrial organization theory
has been focused on the analysis of Nash equilibrium outcomes. The dominant
solution concepts are based on the venerable Cournot (for the case of homoge-
neous products oligopoly) and Bertrand (for the case of monopolistic compe-
tition in differentiated products) solutions. Less commonly, but still broadly,
used is the leader-follower model of Stackelberg. By contrast, much work in
empirical industrial organization eschews game theoretic approaches in favour
of the equally venerable conjectural variations approach, developed by Bowley
(1924) and refined by Bresnahan’s (1981) characterization of consistent conjec-
tural equilibrium.

This situation is widely, and correctly, regarded as unsatisfactory. Reiss and
Wolak (2017, p4326) observe
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many studies estimate a continuous-valued parameter that they claim
represents firm “conjectures” about how competitors will react in
equilibrium. Currently there is no satisfactory economic interpreta-
tion of this [conjectural variation] parameter as a measure of firm be-
havior – save for firms in perfectly competitive, monopoly, Cournot–
Nash and a few other special markets. We therefore see little or no
value to drawing economic inferences about firm conduct from con-
jectural variation parameter estimate.

One alternative to Cournot and Bertrand games is to examine the case where
the strategies are supply functions, that is, mappings from prices to quantities
produced. Beginning with Grossman (1981) and Robson (1981), a number of
writers (Klemperer and Meyer 1989, Vives 2011, Menezes and Quiggin 2012,
and Delbono and Lambertini 2018) have adopted this approach.

The appeal of modelling competition in supply functions is that it allows for
a continuum of solutions from competitive (Bertrand for the case of homoge-
neous goods) to Cournot. Thus, this approach has the potential to provide a
theoretical basis for representing firm behaviour by a continuous valued param-
eter, thereby closing the gap between the game-theoretic literature on industrial
organization and the econometric practice of the structural IO literature.

The main difficulty with modelling competition in supply functions is the
multiplicity of equilibria. As shown by Klemperer and Meyer (1989), in the
absence of restrictions on the set of supply functions allowed as strategies, any
individually rational market outcome may be derived as a Nash equilibrium.

Two solutions to this problem have been put forward, which may be referred
to as ex ante and ex post. Both solutions involve demand uncertainty, which is
necessary to observe movements along the supply curve.

The ex ante solution, put forward by Klemperer and Meyer (see also Vives
2011), is based on the requirement that the same supply function be optimal for
all values of a demand shock ε, assumed for simplicity to be additive. Provided
ε has full support, Klemperer and Meyer demonstrate the existence of a unique
solution. They derive an explicit solution for the linear case of affine demand
and linear marginal cost.

The ex post solution, derived by Menezes and Quiggin (2012), begins by
restricting firms’ strategy sets to a single-parameter family of supply functions.
The paradigmatic examples are strategy sets consisting of affine supply functions
S = α+βp where α is the strategic choice variable, and β is an exogenous slope
parameter ranging from 0 (Cournot) to ∞ (Bertrand).1 For any given value of
the demand shock ε, a unique solution is derived under standard conditions. The
ex post solution is the natural choice when firms can observe demand shocks
before choosing supply strategies. This approach is extended to the case of
differentiated goods by Delbono and Lambertini (2018).

Menezes and Quiggin (2020) extend this single-valued solution by introduc-
ing the concept of the equilibrium strategic supply curve, which traces out the

1Vives (1986) shows how competition in linear supply schedules may arise in a two-stage
model where the degree of flexibility is determined in the first stage
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locus of equilibrium solutions as the demand shock ε varies over its range. In the
ex post solution considered by Menezes and Quiggin, the equilibrium strategic
supply curve will not, in general, be an element of the strategy space available
to firms. For example, in the Cournot solution, the supply functions available to
firms are vertical, but the equilibrium strategic supply curve is upward sloping.

The conjectural variations approach (Bowley 1924) was developed without
a game-theoretic framework. The central idea is that in considering a change in
output, a firm conjectures that other firms will respond by changing their own
outputs. The firm chooses output to maximize profit conditional on this conjec-
tured reaction. The equilibrium outcome will not, in general, be consistent with
the firm’s conjectures. For example, the equilibrium with Cournot conjectures
will not coincide with the Cournot-Nash solution. Bresnahan (1981) develops
the idea of consistent conjectural equilibrium, in which equilibrium outcomes
are consistent with the firm’s conjectures.

The problem of inconsistent conjectures appears analogous to the distinction
between supply functions, considered as elements of the strategy set available
to firms, and strategic supply curves, considered as loci of ex post equilibrium
outcomes. In this paper, we explain the relationship between ex ante, ex post
and conjectural variations approaches.

We first develop the crucial distinction between supply functions and strate-
gic supply curves, outlined above. Next, we show that the conjectural variations
concept can be given a game-theoretic foundation. More precisely we show that
the conjectural variations solution of Bowley (1924) and Bresnahan (1981) may
be interpreted as the ex post equilibrium of a game with linear supply functions
as strategies. This is the unique non-cooperative Nash equilibrium for the game
in question. This result applies whether or not conjectures are consistent in the
sense of Bresnahan (1981).

We next prove the main result of the paper. Under appropriate conditions,
the ex ante and ex post equilibrium supply curves coincide with each other and
with the consistent conjectural equilibrium solution. Further, this is a dominant
strategy equilibrium for both ex ante and ex post games.

We focus throughout on the linear case, for which closed-form solutions can
be derived using all three equilibrium concepts. These results are derived for
the homogeneous products case.

Next, following Delbono and Lambertini (2018), we show that this solution
represents the case in which players in a Stackelberg game are indifferent re-
garding the allocation of leader and follower roles. Finally, we discuss some
implications for empirical work.

2 Model

As in Klemperer and Meyer (1989), we focus on the case of symmetric duopoly.
There are two firms denoted i and j ̸= i. The output of firm i is denoted qi.
Industry output is Q = qi + qj . We define the cost function C (·) , common to
both firms.
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We will focus on the case of quadratic costs

C (q) = cq2/2

that is, linear marginal costs
C ′ (q) = cq.

We assume that consumers do not behave strategically, so that the demand
curve may be taken as exogenously given. We consider the case where the
demand curve is linear and subject to additive shocks, that is

D (p, ε) = a− bp+ ε (1)

where p denotes the market price and the support of ε is a connected subset of
R. The inverse demand is

P (Q, ε) =
a+ ε−Q

b

Given outputs qi, qj and a demand shock ε, profit for firm i is given by

πi (qi : ε, qj) = P (qi + qj , ε)qi − C (qi) .

=
a+ ε− qi − qj

b
qi − cq2i /2

Most of the qualitative results derived below extend to the general case of
convex costs and log-concave demand. However, unique closed-form solutions
are currently available only for the linear case modelled here.

3 Ex ante and ex post equilibria

In this section, we draw a distinction between supply functions (strategies avail-
able to firms) and supply curves (loci of market outcomes as ε varies). We show
how this distinction helps to characterise ex ante and ex post equilibria.

A supply function is a strategy available to firms in an oligopoly game. In
a Nash equilibrium, this is the behavior imputed to firms by their opponents,
when considering the profitability of deviation. It may or may not correspond
to the way firms conceive of their own choices.

A supply curve is a (strategic) equilibrium outcome for firms. As usual,
firm-level supply curves may be aggregated to yield a strategic industry supply
curve.

3.1 Supply functions

A supply function for firm i is a mapping Si : [0,∞) → [0,∞) , where Si (p)
is the output for firm i associated with price p. In both ex ante and ex post
solutions, the set of strategies available to firms consists of supply functions. We
define the class of supply functions S to consist of all differentiable functions
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S : [0,∞) → [0,∞) , with Sp > 0. A game of competition in supply functions is
a non-cooperative game where the strategy sets available to players are subsets
of S.

Klemperer and Meyer consider games where the strategy set is S and the
value function for firm i is ex ante expected profit

E [πi] = Eε [P (Si (p) + Sj (p) , ε)Si − C (Si (p))] .

subject to the market-clearing condition

P (Si (p) + Sj (p)) = p.

Klemperer and Meyer show that, when the strategy space is S, equilibrium
requires maximization of πi (and πj) for every ε.

In the ex post problem, the value of ε is observed first, followed by a game
of competition in supply functions where the value function is ex post profit,
conditional on ε.

πi(Si, Sj , ε) = P (Si (p) + Sj (p) , ε)Si (p)− C (Si (p)) .

For the ex post case, Menezes and Quiggin (2012, 2020) consider strategy
spaces of the form

Si (p) = αi + βp,

where αi is the strategic variable for firm i and β is an exogenous parameter
representing the competitiveness of the market. Menezes and Quiggin prove the
existence of a unique solution for this case.

It is crucial to observe that the strategic variable αi need not correspond to
the way firm i models their own choices. Firm i may consider itself as setting a
price, quantity, markup or some other variable. Rather αi reflects the beliefs of
firm j ̸= i about the strategy being pursued by i. When considering a possible
deviation from its own strategy, which may result in a change in the price p,
firm j evaluates the consequences on the assumptions that firm i will hold their
strategic choice αi constant, and will produce S (p, αi;β) = αi + βp. This is the
standard Nash equilibrium concept.2

3.2 Equilibrium supply curves

We now consider equilibrium supply curves in games of competition in supply
functions, using the ex ante and ex post equilibrium concepts. As a baseline,
we first restate the solution for the competitive case.

In the standard Marshallian analysis, the supply curve is a locus of pairs
(p,Q) where Q = q1 + q2 is the aggregate output of firms in the industry at

2This point has been made by Klemperer and Meyer (1989) and subsequent writers. Nev-
ertheless, in economic applications of game theory, where the choice of strategy space is in
question, it is common to see discussion of the way in which players conceive of their own
choices, rather than the way they represent the choices of their opponents.
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price p. The supply curve coincides with the locus of market equilibria traced
out as ε varies over its support.

The same representation may be extended to the locus of (Nash) equilibrium
outcomes in non-competitive markets, represented as games of competition in
supply functions. As in the competitive case, the strategic industry supply curve
is the locus of market equilibria (Q∗ (ε) , p∗ (ε)) as ε ranges over its support.

3.3 Ex ante equilibrium supply curve

In the ex ante solution, the supply curve for each firm is simply the firm’s
equilibrium supply function, that is, q (p) = S (p). The strategic industry supply
curve is the sum of the firms’ equilibrium supply functions, that is, Q (p) =
2S (p).

As shown by Klemperer and Meyer, the symmetric ex ante equilibrium sup-
ply curve must satisfy

q′ (p) = S′ (p) =
S (p)

p− C ′ (S (p)) +Dp (p)
. (2)

For the linear case, this becomes

q′ (p) =
S (p)

p− cq − b
.

Klemperer and Meyer show that all supply functions satisfying the ex ante
condition (2) are inadmissible as equilibria for the linear case, with the exception
of the linear supply function with slope

β̂ =
1

2

(
−b+

√
b2 +

4b

c

)
.

Hence, this is the unique ex ante equilibrium supply curve.

3.4 Ex post equilibrium supply curve

In the ex post solution, the supply curve is a locus of equilibria, one for each
value of ε. It does not, in general, coincide with an element of the strategy space
available to firms. For the case where the strategy space consists of affine supply
functions S (p, αj ;β) = αj+βp, Menezes and Quiggin (2020) derive the residual
demand for firm i as

Di(P, ε, αj) = D(P, ε)− βP − αj (3)

which yields, for the linear case

Di(P, ε, αj) = a+ ε− αj − (β + b)P (4)
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Taking the first-order conditions for each firm, and imposing market clearing
yields the symmetric equilibrium firm supply curve

q (p) = (p− C ′ (q)) (β −Dp (p, ε (p))) (5)

or in the linear case
q (p) = (p− cq) (β + b) .

Rearranging, we obtain

q (p) =
(b+ β)

1 + c (b+ β)
p.

The slope of the firm’s strategic supply curve is

q′ (p) =
(b+ β)

1 + c (b+ β)
.

The slope q′(p) will not, in general, be equal to β, the slope of the supply func-
tions in the strategy space. As will be shown below, the two coincide precisely
when the ex ante and ex post solutions coincide.

4 Conjectural variations

As noted by Wolak and Reiss (2017), the conjectural variations approach re-
mains dominant in applied IO. Nevertheless, this approach has been almost
universally dismissed by IO theorists.

The main objections are summarised by Escrihuela-Villar (2015)

This model has often been criticized since ad hoc conjectural varia-
tions are generally inconsistent with rational behavior except at the
equilibrium point (see, among others, Makowski 1987). It has also
been argued that its solution is not entirely satisfactory from a game-
theoretic point of view because it describes “dynamics” based on a
static model. Basically, in the theoretical literature, conjectural vari-
ations have been criticized for their lack of theoretical foundations,
at least in static models (for additional references and a discussion,
see Martin (2002, 50–51)).

In this section, we show that the objections cited by Escrihuela-Villar may
be overcome. Any conjectural variations equilibrium may be represented as the
Nash equilibrium of an ex post game in linear supply functions.

The conjectural variations parameter is derived as a transformation of the
slope of the supply functions available as strategies in the corresponding ex post
game. The conjectural variations parameter can be interpreted as representing
the competitiveness of the market environment faced by each firm.
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4.1 Conjectural variations equilibrium

In the conjectural variations equilibrium concept, firm i chooses output qi on
the assumption that firm j will respond by changing output by θqi. Hence firm
i acts as a monopolist facing a residual inverse demand curve with slope

∂P

∂qi
= −1 + θ

b

and similarly for firm j. The first-order conditions on q

P + q
∂P

∂q
= cq

that is,

P − 1 + θ

b
q − cq = 0 (6)

along with market-clearing,

P (Q, ε) =
a+ ε− 2q

b
(7)

determine the unique symmetric equilibrium.
Combining (6) and (7) yields the conjectural equilibrium:

q =
a+ ε

3 + θ + bc

p =
a+ ε

b

(1 + θ + bc)

(3 + θ + bc)

so that

q (p) =
b

(1 + θ + cb)
p

Allowing ε to vary over its full range, we obtain the conjectural variations
strategic supply curve.

4.2 Conjectural variations and supply functions

We now show that, for the linear case, the conjectural variations solution may
be derived as the Nash equilibrium of a game with linear supply functions as
strategies.

Proposition 1 Fix ε and let demand be given by D = a+ ε− bp. Suppose that
the conjectural variation parameter is given by θ. Then the conjectured behavior
is equivalent that of a firm with strategy

q = α+ βp
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where

β =
−θ

1 + θ
b

Proof. Consider the game in linear supply strategies. The residual inverse
demand faced by firm i for given ε is

P (qi, ε) =
a+ ε−Q

b

=
a+ ε− qi − (αj + βp)

b

which yields

P (qi, ε) =
a+ ε− qi − αj

b+ β

This implies
∂P

∂qi
=

−1

b+ β

Hence
∂qj
∂qi

=
−β

b+ β
≡ θ

Conversely

β =
−θ

1 + θ
b (8)

If (8) holds, the first-order condition facing i in the conjectural variations
problem with parameter θ will be the same as the corresponding condition in
the ex post game of linear supply functions, and similarly for j. Hence, the
conjectural variations equilibrium will coincide with the Nash equilibrium for
the ex post game of linear supply functions.

Using Proposition 1 to convert θ to β we see that the conjectural equilibrium
solution coincides with the ex post solution

q (p) =
b(

1 + −β
b+β + cb

)p
=

(b+ β)

1 + c (b+ β)
p

In general, the ex post solution will not satisfy q′(p) = β. Interpreted in terms
of conjectural variations, and applying Proposition 1, this is a restatement of
the observation that conjectures are not, in general, consistent. Conversely, as
we will show below, the consistent conjectures equilibrium of Bresnahan (1981)
corresponds to the case when q′(p) = β.
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5 When do ex ante, ex post and conjectural
variations equilibria coincide?

We now consider the relationship between the equilibrium supply curves for
the three concepts discussed above. We first derive a general characterization
of the relationship between ex ante and ex post equilibrium concepts. This
characterization may be made explicit for the case of linear demand and linear
marginal cost (quadratic total cost), for which a unique ex ante solution is
known to exist.

Consider the ex post game with strategies S = α + βp. In terms of the
residual demand facing i, an increase in αj is just like a reduction in ε. If, for

some β̂, the ex post equilibrium is α = 0 for all values of ε, then αi = 0 is a
best reply to all possible strategic choices Sj = αj + β̂p for j and vice versa.

Equivalently, for all values of ε, S = β̂p is a dominant strategy equilibrium for
the ex post game. It follows that, in the ex ante game, S = β̂p is the best reply
to itself, and therefore defines a symmetric Klemperer-Meyer equilibrium.

We now show explicitly that the value of β̂ for which α = 0 is a dominant
strategy equilibrium in the ex post game coincides with the value of β̂ derived
by Klemperer and Meyer as an ex ante equilibrium solution for the case of linear
demand and marginal cost.

The necessary condition for an ex ante equilibrium,

q′ (p) =
q

p− cS
− b,

may be rewritten as

−b = q′ (p)− q

p− cq
. (9)

Equation (9) will be satisfied by a linear supply function S (p) = β̂p if and
only if

−b = β̂ − β̂p

p− cβ̂p
. (10)

Since 0 ≤ q′ (p) = β̂ < ∞ the function S (p) = β̂p is an ex ante equilibrium
if and only if (10) holds

Now consider the ex post problem with strategies S (p) = α + β̂p. The ex
post solution (5) yields

q (p) = (p− cq)
(
β̂ + b

)
= (p− cq)

(
β̂ −

(
β̂ − β̂p

p− cq

))
= β̂p.

That is, the ex post equilibrium solution is equal to β̂p if and only if (10) holds,

that is, if and only if the ex ante equilibrium solution is equal to β̂p.
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As noted above, Klemperer and Meyer derive a closed form solution for β̂,
using the differential equation (2). The analysis above yields an elementary

derivation for β̂. The demand condition (10) becomes

−b = β̂ − β̂p

p− cβ̂p
,

or

−b = β̂ − β̂

1− cβ̂

which may be rearranged to yield

β̂2 + β̂b− b

c
= 0, (11)

which is true if and only if

β̂ =
1

2

(
−b+

√
b2 +

4b

c

)
. (12)

as derived by Klemperer and Meyer.
Conversely, if

α+ βp =
(b+ β)

(1 + c (b+ β))
p,

the solution derived above shows that

α = −
(
cβ2 + cβb− b

)
(1 + c [β + b])

p, (13)

so that α = 0 if and only if
(
cβ2 + cβb− b

)
= 0, that is, only if β = β̂.

5.1 Consistent conjectural variations

We now show that, for any ε, the solution for β̂ derived immediately above,
coincides with the Bresnahan Consistent Conjectural Equilibrium interpreted,
as in Section 4, as the solution to an ex post game in linear supply functions.

Recall (8)

β =
−θb

1 + θ
.

Hence, (11)

β̂2 + β̂b− b

c
= 0,

yields
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(
θb

θ + 1

)2

−
(

θb2

θ + 1

)
− b

c
= 0

which after some manipulation yields

θ =
− (cb+ 2) +

√
c2b2 + 4cb

2

which is the solution derived by Bresnahan (1981) (with the change of notation
b = 1/d)

6 Endogenous Move Order

Thus far, we have considered the case of a normal-form simultaneous-move
game. This analysis leaves open the possibility that firms may benefit by pre-
committing to a particular strategy, for example by announcing their supply
function. The classic case is that of competition in quantities, where the first
mover in a Stackelberg equilibrium earns higher profits than they would in a
Cournot-Nash equilibrium. Dowrick (1986) and Hamilton and Slutsky (1990)
analyse extended duopoly games in which firms restricted to Cournot supply
functions (β = 0) can set their quantities in one of two possible periods.

Delbono and Lambertini (2018) examine this question in relation to the ex
post model with linear supply functions. They derive conditions under which
firms will be indifferent as to move order.

In this section, we extend these results, and use the analysis above to clarify
the nature of the equilibrium involved. We first show that the case where ex
ante, ex post and consistent conjectural variations solutions coincide is a unique
dominant strategy equilibrium. In such an equilibrium, players are indifferent
as to move order (Hamilton and Slutsky 1993).

This is shown in:

Proposition 2 Under the stated conditions,
(i) S (p) = β̂p is the unique ex ante equilibrium;
(ii) αi = αj = 0 is a dominant strategy equilibrium for the ex post problem

with strategies S (p) = α+ β̂p; and
(iii) This is the consistent conjectures equilibrium.

Proof. If

Dp (p) = β̂ − β̂p

p− C ′
(
β̂p
) ,

then the ex ante condition

S′ (p) =
S

p− C ′ (S)
+Dp (p)
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becomes

S′ (p) = β̂ +
S

p− C ′ (S)
− β̂p

p− C ′
(
β̂p
) .

Consider a supply function S̃ satisfying the ex ante condition (2). Suppose for

some p, S̃(p) > (<,=)β̂p. Let β̃ (p) = S̃ (p) /p. Then

S̃′ (p) = β̂ +
β̃ (p) p

p− C ′
(
β̃ (p) p

) − β̂p

p− C ′
(
β̂p
)

> (<,=) β̂ +
β̃ (p) p

p− C ′
(
β̂p
) − β̂p

p− C ′
(
β̂p
)

= β̂ +
(
β̃ (p)− β̂

) p

p− C ′
(
β̂p
)

> (<,=) β̃ (p) ,

where the first inequality follows from convexity of C, and the second from the
fact that p

p−C′(β̂p)
> 1. Hence, if S̃(p) ̸= β̂p is a solution to (2), S̃′ (p) eventually

goes to ∞ or 0. Hence S(p) = β̂p is the unique solution.
For the dominance result, recall that, as regards the residual demand facing

firm i, a change in ε has the same effect as an equal and opposite change in αj .
Hence, if αi = 0 is a best reply to αj = 0 for all ε it is a best reply to any αj

for all ε
Now consider general values of β ∈ [0,∞). First we may observe that the

ex post solution (5) is increasing in β, and also in b = −Dp. It follows that the
equilibrium price, for given ε, is decreasing in β and b.

Inspection of (13) shows α is linear in p and is positive (negative) when

β < (>)β̂. Further, since p is linear in ε, the same relationship holds between α
and ε. Hence, when α is positive and increasing (negative and decreasing) in p,
the slope of the equilibrium supply curve is greater than (less than β). In both

cases, as shown above, equality holds for β = β̂.
As noted above, in terms of the residual demand facing i, an increase in αj

is just like a reduction in ε. It follows that strategies αi, αj are complements,

(substitutes, neutral) whenever β < (>,=)β̂.
We record these points as a proposition.

Proposition 3 Assume linear demand and quadratic costs, and let β̂ be the
slope of the supply curve in the ex ante solution. Then, for the ex post problem
(i) If β < (>)β̂, then for all ε, the market equilibrium price in the ex post so-
lution is greater (less) and the equilibrium quantity less (greater) than for the
market equilibrium in the ex ante solution
(ii) If β < (>)β̂, then q′ (p) > (<) β where q′ (p) is the slope of the equilibrium
supply curve
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(iii) Strategies αi, αj are complements, (substitutes, neutral) whenever

β < (>,=) β̂.

Prop 3(iii) may be interpreted in terms of endogenous move order. The
standard analysis of the Stackelberg game applies when β = 0. In this case,
strategies are substitutes, and players will prefer to move first. If move order
is endogenous in this case, and neither player has an advantage in timing, the
unique equilibrium is that of simultaneous moves. On the other hand, for β →
∞, strategies are complements and players prefer to move second.

Delbono and Lambertini (2018) examine the problem of endogenous move
order with competition in linear supply functions. They consider the case of
differentiated products, constant marginal costs and non-stochastic demand,
derived from the utility function

U = α(qi + qj)−
1

2

(
(qi)

2
+ (qj)

2
+ 2σqiqj

)
where σ is an inverse measure of production differentiation.

As in Menezes and Quiggin (2012), strategies are of the form S = α + βp,
where the strategic variable is α, the intercept of the supply function, while β.
the slope of the supply function, is determined exogenously.

Delbono and Lambertini show that, as in the homogenous good game ana-
lyzed here, strategies are substitutes (complements) for β < (>) 1√

1−σ2
. In a

game with observable delay, the case β < 1√
1−σ2

produces a unique equilibrium

in which both players move as soon as possible. The case β > 1√
1−σ2

produces

two pure-strategy Nash equilibria, in each of which one player moves first and
the other moves second. A similar analysis applies to the linear case modelled
here.

The case analyzed by Delbono and Lambertini coincides with the linear case
modelled above for homogenous goods and zero costs, that is σ = 1, c = 0. In
this case, equation (12) shows β̂ = ∞, that is, strategies are substitutes for
all β ∈ [0,∞). Hence the unique equilibrium involves simultaneous play. The

higher is c, that is, the more convex is the cost function, the lower is β̂ and the
wider the range of β for which strategies are complements.

7 Empirical application

Menezes and Quiggin (2020) discuss empirical estimation in the context of the
ex post strategic supply curve, and observe that analysis using the conjectural
variations approach may be reinterpreted to yield estimates of β. The results
here show that this interpretation may be undertaken in reverse for the ex post
strategic supply curve. In view of the results derived above, estimates of the ex
post strategic supply curve may be regarded, in terms of conjectural variations,
as incorporating the maintained hypothesis of consistent conjectural variations.
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With this interpretation, the simulations of Green and Newbery (1992) may
be regarded as representing the predictions of a consistent conjectural equilib-
rium model. The empirical analysis of Wolfram (1999), which finds markups
lower than those simulated by Green and Newbery, represents a rejection of
the constraint imposed by the maintained hypothesis of consistent conjectural
variations. As suggested by Wolfram (1999), this outcome might reflect limit
pricing due to the threat of entry.

Menezes and Quiggin (2020) also provide a theoretical basis for the analysis
of cost pass-through, consistent with the work of Weyl and Fabinger (2013).
Using the results in the present paper, this analysis may be restated in terms
of a game-theoretic interpretation of conjectural variations equilibrium. This
suggests the possibility of integrating the largely atheoretical literature on cost
pass-through with the structural IO literature based on conjectural variations
models.

8 Conclusion

The disconnect between theoretical and empirical approaches to the modelling
of oligopolistic markets is longstanding and problematic. In this paper, we have
shown how the conjectural variations approach, widely used in empirical prac-
tice, can be given a game-theoretic representation in terms of competition in
supply functions. Further, we have shown that the consistent conjectures equi-
librium corresponds to the case where ex ante and ex post models of competition
in supply functions yield the same equilibrium industry supply curve.
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